Jumat, 22 November 2019

Persamaan Kuadrat Part 2: Menentukan Akar-Akar Persamaan Kuadrat Dengan Melengkapkan Kuadrat Sempurna

beringsang


Sebelumnya, kita sudah pernah mempelari bentuk umum persamaan kuadrat, akar-akar persamaan kuadrat beserta juga cara menentukan akar-akar persamaan kuadrat dengan cara memfaktorkan. Materi kali kita masih mempelajari cara menentukan akar-akar persamaan kuadrat dengan cara yg lain, yaitu dengan melengkapkan kaudrat sempurna.  Tidak semua bentuk persamaan kuadrat bisa dengan beringsang gembur kita faktorkan, contohnya persamaan kuadrat berikut: $x^2+6x+1=0$, untuk itu, kita memerlukan alternatif lain untuk menentukan akar-akarnya, alternatif lain ada dua cara, bisa dengan melengkapkan kuadrat sempurna atau bisa dengan cara menggunkan rumus kuadratis (rumus ABC) yang atas kita bahas dengan materi berikutnya.

Menyelesaikan persamaan kuadrat dengan cara melengkapkan kuadrat sempurna dengan dasarnya kita mengubah bentuk persamaan kuadrat $ax^2+bx+c=0$ menjadi bentuk $(x\pm p)^2=q$ dengan $q\geq 0$. Bentuk $(x\pm p)^2$ inilah yg disebut bentuk kuadrat sempurna.  Beberapa contoh bentuk kuadrat sempuna diantaranya: $(x+4)^2$ beserta $(2x-3)^2$.

Jika ruas kiri suatu persamaan kuadrat sudah berbentuk kuadrat sempurna, maka persamaan kuadrat tersebut becus diselesaikan dengan menarik akar.
$$x^2=p\Leftrightarrow x=\pm\sqrt{p}$$
dengan $p\geq 0$.

Contoh 1:
Tentukan akar-akar dari persamaan $(x+3)^2=7$

Jawab:
$\begin{align*}(x+3)^2&=7\\x+3&=\pm \sqrt{7}\\x&=-3\pm\sqrt{7}\\x_1&=-3+\sqrt{7}\\x_2&=-3-\sqrt{7}\end{align*}$

Jika persamaan kuadrat belum membentuk kuadrat sempurna, maka kita harus "menyempurnakan"nya terlebih beringsang silam dengan formula berikut:
$$x^2\pm 2px+p^2=(x\pm p)^2$$

perhatikan beberapa contoh berikut:

Contoh 2:
Tentukan akar-akar dari persamaan kuadrat $x^2+6x+9=0$

Jawab:
$\begin{align*}x^2+6x+9&=0\\(x+3)^2&=0\\x+3&=0\\x&=-3\end{align*}$

Contoh 3:
Tentukan akar-akar dari persamaan kuadrat $x^2+6x+6=0$

Jawab:
$\begin{align*}x^2+6x+6&=0\\x^2+6x+9-3&=0\\x^2+6x+9&=3\\(x+3)^2&=3\\x+3&=\pm\sqrt{3}\\x&=-3\pm\sqrt{3}\\x_1&=-3+\sqrt{3}\\x_2&=-3-\sqrt{3}\end{align*}$

beringsang
beringsang

Contoh 4:
Tentukan akar-akar dari persamaan kuadrat $x^2-2x-10=0$

Jawab:
$\begin{align*}x^2-2x-10&=0\\x^2-2x+1-11&=0\\x^2-2x+1&=11\\(x-1)^2&=11\\x-1&=\pm\sqrt{11}\\x&=1\pm\sqrt{11}\\x_1&=1+\sqrt{11}\\x_2&=1-\sqrt{11}\end{align*}$

Jika masih belum jelas, silakan pelajari video dari channel YouTube m4th-lab sebagai berikut:


Silakan gabung di Fans Page Facebook, Channel Telegram untuk memperoleh update terbaru, dan Subscribe Channel YouTube m4th-lab untuk memperoleh video pembelajaran matematika secara gratis, untuk mengikuti tautan klik dengan tombol di bawah ini:


m4th-lab Youtube Channel: 


m4th-lab Facebook Fans Page:


m4th-lab Telegram Channel:

@banksoalmatematika



Download Ribuan Soal matematika, lihat pada Daftar Isi atau Klik Disini

Tidak ada komentar:

Posting Komentar