Pada kesempatan kali ini kita hendak membahas sebuah ketaksamaan yg sangat penting dalam matematika, yaitu ketaksamaan Chaucy Schwarz (Cauchy-Schwarz Inequality). Bagi kalian yg hendak berkompetisi dalam olimpiade matematika Ketaksamaan Chaucy Schwarz bersama dengan $AM-GM$ merupakan "senjata" yg wajib kalian kuasai, jadi baca dengan pelajari tulisan ini sampai selesai ☺
Teorema Chaucy Schwarz:
Misalkan $a_1, a_2, ..., a_n$ dengan $b_1, b_2, ... , b_n$ adalah bilangan-bilangan real, maka berlaku:
$$(a_1^{2}+a_2^{2}+...+a_n^{2})(b_1^{2}+b_2^{2}+...+b_n^{2})\geq (a_1b_1+a_2b_2+...+a_n b_n)^{2}$$
kesamaan terjadi jikalau dengan hanya jikalau $\frac{a_1}{b_1}=\frac{a_2}{b_2}=...=\frac{a_n}{b_n}$
Misalkan $a_1, a_2, ..., a_n$ dengan $b_1, b_2, ... , b_n$ adalah bilangan-bilangan real, maka berlaku:
$$(a_1^{2}+a_2^{2}+...+a_n^{2})(b_1^{2}+b_2^{2}+...+b_n^{2})\geq (a_1b_1+a_2b_2+...+a_n b_n)^{2}$$
kesamaan terjadi jikalau dengan hanya jikalau $\frac{a_1}{b_1}=\frac{a_2}{b_2}=...=\frac{a_n}{b_n}$
ketaksamaan di atas beroleh juga di tulis:
$$\boxed{\left(\sum_{k=1}^{n} a_{k}b_{k}\right)^{2}\leq\left(\sum_{k=1}^{n}a_k^{2}\right)\left(\sum_{k=1}^{n} b_k^{2}\right)}$$
BUKTI
Didefinisikan fungsi $F:\mathbb{R}\rightarrow \mathbb{R}$ dengan $$F(t)=\sum_{k=1}^{n}(a_{k}-tb_{k})^{2}$$tampak jelas bahwa $F$ merupakan fungsi tak negatif, oleh karena itu diperoleh:
\begin{align*}F(t)&=\sum_{k=1}^{n}a_{k}^2-2ta_{k}b_{k}+t^2b_k^2\\&=\left ( \sum_{k=1}^{n}b_k^2 \right )t^2-2\left ( \sum_{k=1}^{n}a_kb_k \right )t+\left ( \sum_{k=1}^{n}a_k^2 \right )\geq 0\end{align*}
karena $F(t)\geq0$ maka diskriminannya $\leq 0$ :
\begin{align*}4\left ( \sum_{k=1}^{n}a_kb_k \right )^2-4\left ( \sum_{k=1}^{n}a_k^2 \right )\left ( \sum_{k=1}^{n}b_k^2 \right )&\leq0\\4\left ( \sum_{k=1}^{n}a_kb_k \right )^2&\leq4\left ( \sum_{k=1}^{n}a_k^2 \right )\left ( \sum_{k=1}^{n}b_k^2 \right )\\\left ( \sum_{k=1}^{n}a_kb_k \right )^2&\leq\left ( \sum_{k=1}^{n}a_k^2 \right )\left ( \sum_{k=1}^{n}b_k^2 \right )\hspace{1cm}\blacksquare\end{align*}
pada Ketaksamaan Chaucy Schwarz apabila kita pilih $a_i=\frac{t_i}{\sqrt{w_i}}$ dengan $b_i=\sqrt{w_i}$ dengan $i=\left \{ 1, 2, 3, ... n \right \}$ dengan $w_i\geq0$, maka diperoleh:
\small\begin{align*}\left ( \frac{t_1^2}{w_1} +\frac{t_2^2}{w_2}+...+\frac{t_n^2}{w_n}\right )\left ( w_1+w_2+...+w_n \right )&\geq\left ( t_1+t_2+...+t_n \right )^2\\ \frac{t_1^2}{w_1} +\frac{t_2^2}{w_2}+...+\frac{t_n^2}{w_n}&\geq\frac{\left ( t_1+t_2+...+t_n\right )^2}{w_1+w_2+...+w_n}\end{align*}
Bentuk ketaksamaan diatas dikenal dengan Ketaksamaan Chaucy Schwarz Engel (CS Engel) yg dipopulerkan oleh Arthur Engel, ketaksamaan ini dikenal juga dengan "Lemma Titu" ataupun "Lemma Andreescu".
Ketaksamaan Chaucy Schwarz Engel (CS Engel):
Untuk sembarang bilangan Real $t_1, t_2, t_3, ..., t_n$ dengan sembarang bilangan real positif $w_1, w_2, w_3, ... , w_n$ berlaku
$$\frac{{t_{1}}^{2}}{w_{1}}+\frac{{t_{2}}^{2}}{w_{2}}+\frac{{t_{3}}^{2}}{w_{3}}+...+\frac{{t_{n}}^{2}}{w_{n}}\geq\frac{(t_1+t_2+t_3+...+t_n)^{2}}{w_1+w_2+w_3+...+w_n}$$
Untuk sembarang bilangan Real $t_1, t_2, t_3, ..., t_n$ dengan sembarang bilangan real positif $w_1, w_2, w_3, ... , w_n$ berlaku
$$\frac{{t_{1}}^{2}}{w_{1}}+\frac{{t_{2}}^{2}}{w_{2}}+\frac{{t_{3}}^{2}}{w_{3}}+...+\frac{{t_{n}}^{2}}{w_{n}}\geq\frac{(t_1+t_2+t_3+...+t_n)^{2}}{w_1+w_2+w_3+...+w_n}$$
CONTOH SOAL
SOAL 1
$$\left ( a+b+c \right )\left ( \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right )\geq 9$$
Pembahasan:
SOAL 2 (South Africa, 1995)
Tunjukkan untuk setiap bilangan real positif $a, b, c, d$ berlaku
$$\left ( a+b+c+d \right )\left ( \frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d} \right )\geq 64$$
Pembahasan:
Penting:
Saya sarankan anda membuka blog ini menggunakan PC/laptop, karena jikalau menggunakan mobile/android kemungkinan tampilan persamaan matematika yg panjang hendak terpotong, jikalau memang terpaksa menggunakan mobile/android maka saya sarankan dalam posisi landscape dan pastikan setting rotasi layar dalam kondisi aktif.
$\blacksquare$ Denih Handayani, 2020
meriang
Tidak ada komentar:
Posting Komentar