kemarau
Kesempatan kali ini saya mau membahas bagaimana cara menyelesaikan persmalahan limit mendekati tak hingga yg saat ini dipelajari di kelas XII dengan mata pelajaran matematika peminatan (untuk kurikulum 2013 revisi). Namun yg mau kita bahas, saya khususkan membahas bagaimana cara menyelesaikan limit tak hingga bentuk $\infty-\infty$ yg melibatkan akar pangkat 3.
Alasan kenapa saya menulis masalah ini, karena kebetulan hari ini dengan salah satu grup diskusi matematika yg saya ikuti, ada salah satu pertanyaan yg menanyakan masalah terkait limit tak hingga akar pangkat 3, jadi rasanya perlu untuk saya bahas.
Bentuk limit tak hingga akar pangkat 3 yg mau kita bahas yaitu yg bentuknya sebagai berikut:
$$\lim_{x\to\infty}\left(\sqrt[3]{ax^3+bx^2+cx+d}-\sqrt[3]{ax^3+px^2+qx+r}\right)$$
Bentuk limit tak hingga akar pangkat 3 yg mau kita bahas yaitu yg bentuknya sebagai berikut:
$$\lim_{x\to\infty}\left(\sqrt[3]{ax^3+bx^2+cx+d}-\sqrt[3]{ax^3+px^2+qx+r}\right)$$
Jika kita substitusi mau diperoleh $\infty-\infty$ (bentuk tak tentu). Tentu saja penyelesaiannya bukan itu.
Kita tidak bisa menghilangkan bentuk akar dengan cara kali sekawan seperti halnya akar pangkat 2. Namun, kita bisa memanfaatkan bentuk aljabar berikut menghilangkan bentuk akar pangkat 3:
$$(m^3-n^3)(m^2+mn+n^3)$$
Menemukan Cara Cepat Menyelesaikan Limit Tak hingga Akar Pangkat Tiga
Mari kita kembali ke bentuk umum permasalah yg mau kita selesaikan yaitu:
$$\lim_{x\to\infty}\left(\sqrt[3]{ax^3+bx^2+cx+d}-\sqrt[3]{ax^3+px^2+qx+r}\right)$$
Untuk menghemat penulisan, saya mau gunakan pemisalan sebagai berikut:
$\displaystyle m={\sqrt[3]{ax^3+bx^2+cx+d}}$
$\displaystyle n={\sqrt[3]{ax^3+px^2+qx+r}}$
maka:
$\displaystyle\lim_{x\to\infty}\left(\sqrt[3]{ax^3+bx^2+cx+d}-\sqrt[3]{ax^3+px^2+qx+r}\right)=\lim_{x\to\infty}(m-n)$
Kita kalikan dengan $\displaystyle\frac{m^2+mn+n^2}{m^2+mn+n^2}$, maka kita peroleh:
$\begin{align*}\lim_{x\to\infty}(m-n)\times\frac{m^2+mn+n^2}{m^2+mn+n^2}&=\lim_{x\to\infty}{\frac{(m-n)(m^2+mn+n^2)}{m^2+mn+n^2}}\\&=\lim_{x\to\infty}{\frac{m^3-n^3}{m^2+mn+n^2}}\end{align*}$
sekarang, kita substitusikan kembali $\displaystyle m={\sqrt[3]{ax^3+bx^2+cx+d}}$ dan $\displaystyle n={\sqrt[3]{ax^3+px^2+qx+r}}$ ke bentuk limit terakhir yg kita peroleh:
Karena kita berada dalam konteks limit mendekati tak hingga, maka yg mau kita ambil derajat tertinggi dari penyebut dengan pembilang, sehingga kita peroleh:
$\begin{align*}\lim_{x\to\infty}\frac{(b-p)x^2}{(\sqrt[3]{ax^3})^2+(\sqrt[3]{ax^3})(\sqrt[3]{ax^3})+(\sqrt[3]{ax^3})^2}&=\lim_{x\to\infty}{\frac{(b-p)x^2}{(\sqrt[3]{ax^3})^2+(\sqrt[3]{ax^3})^2+(\sqrt[3]{ax^3})^2}}\\&=\lim_{x\to\infty}{\frac{(b-p)x^2}{3(\sqrt[3]{ax^3})^2}}\\&=\lim_{x\to\infty}{\frac{(b-p)x^2}{3\sqrt[3]{a^2}x^2}}\\&=\frac{b-p}{3\sqrt[3]{a^2}}\end{align*}$
Dari sederet langkah yg kita lakukan di atas, kita peroleh kesimpulan:
$$\lim_{x\to\infty}\left(\sqrt[3]{ax^3+bx^2+cx+d}-\sqrt[3]{ax^3+px^2+qx+r}\right)=\frac{b-p}{3\sqrt[3]{a^2}}$$
Agar mengetahui bagaimana penerapan formula di atas untuk menyelesaikan permasalahan limit tak hingga akar pangkat 3, perhatikan beberapa contoh soal dengan pembahasan berikut ini:
Baca: Download bank soal limit tak hingga pdf
Contoh 1
$\displaystyle\lim_{x\to\infty}{\left(\sqrt[3]{x^3+12x^2+4x-1}-\sqrt[3]{x^3-6x^2+2x+10}\right)}=$ ....
Pembahasan:
$\begin{align*}\lim_{x\to\infty}{\left(\sqrt[3]{x^3+12x^2+4x-1}-\sqrt[3]{x^3-6x^2+2x+10}\right)}&=\frac{12-(-6)}{3\sqrt[3]{1^2}}\\&=\frac{12+6}{3}\\&=\frac{18}{3}\\&=6\end{align*}$
Contoh 2
$\displaystyle\lim_{x\to\infty}{\left(\sqrt[3]{8x^3+12x^2}-(2x+2)\right)}=$ ....
Pembahasan:
$\begin{align*}\lim_{x\to\infty}\left ( \sqrt[3]{8x^3+12x^2}-(2x+2)] \right )&=\lim_{x\to\infty}\left ( \sqrt[3]{8x^3+12x^2} -\sqrt[3]{(2x+2)^3}\right )\\&=\lim_{x\to\infty}\left ( \sqrt[3]{8x^3+12x^2} -\sqrt[3]{8x^3-24x^2+24x-8}\right )\\&=\frac{2-(-24)}{3.\sqrt[3]{8^2}}\\&=\frac{36}{12}\\&=3\end{align*}$
Demikianlah pembahasan terkait materi limit tak hingga akar pangkat 3. Semoga bermanfaat
Kita tidak bisa menghilangkan bentuk akar dengan cara kali sekawan seperti halnya akar pangkat 2. Namun, kita bisa memanfaatkan bentuk aljabar berikut menghilangkan bentuk akar pangkat 3:
$$(m^3-n^3)(m^2+mn+n^3)$$
Menemukan Cara Cepat Menyelesaikan Limit Tak hingga Akar Pangkat Tiga
Mari kita kembali ke bentuk umum permasalah yg mau kita selesaikan yaitu:
$$\lim_{x\to\infty}\left(\sqrt[3]{ax^3+bx^2+cx+d}-\sqrt[3]{ax^3+px^2+qx+r}\right)$$
Untuk menghemat penulisan, saya mau gunakan pemisalan sebagai berikut:
$\displaystyle m={\sqrt[3]{ax^3+bx^2+cx+d}}$
$\displaystyle n={\sqrt[3]{ax^3+px^2+qx+r}}$
maka:
$\displaystyle\lim_{x\to\infty}\left(\sqrt[3]{ax^3+bx^2+cx+d}-\sqrt[3]{ax^3+px^2+qx+r}\right)=\lim_{x\to\infty}(m-n)$
Kita kalikan dengan $\displaystyle\frac{m^2+mn+n^2}{m^2+mn+n^2}$, maka kita peroleh:
$\begin{align*}\lim_{x\to\infty}(m-n)\times\frac{m^2+mn+n^2}{m^2+mn+n^2}&=\lim_{x\to\infty}{\frac{(m-n)(m^2+mn+n^2)}{m^2+mn+n^2}}\\&=\lim_{x\to\infty}{\frac{m^3-n^3}{m^2+mn+n^2}}\end{align*}$
sekarang, kita substitusikan kembali $\displaystyle m={\sqrt[3]{ax^3+bx^2+cx+d}}$ dan $\displaystyle n={\sqrt[3]{ax^3+px^2+qx+r}}$ ke bentuk limit terakhir yg kita peroleh:
Karena kita berada dalam konteks limit mendekati tak hingga, maka yg mau kita ambil derajat tertinggi dari penyebut dengan pembilang, sehingga kita peroleh:
$\begin{align*}\lim_{x\to\infty}\frac{(b-p)x^2}{(\sqrt[3]{ax^3})^2+(\sqrt[3]{ax^3})(\sqrt[3]{ax^3})+(\sqrt[3]{ax^3})^2}&=\lim_{x\to\infty}{\frac{(b-p)x^2}{(\sqrt[3]{ax^3})^2+(\sqrt[3]{ax^3})^2+(\sqrt[3]{ax^3})^2}}\\&=\lim_{x\to\infty}{\frac{(b-p)x^2}{3(\sqrt[3]{ax^3})^2}}\\&=\lim_{x\to\infty}{\frac{(b-p)x^2}{3\sqrt[3]{a^2}x^2}}\\&=\frac{b-p}{3\sqrt[3]{a^2}}\end{align*}$
Dari sederet langkah yg kita lakukan di atas, kita peroleh kesimpulan:
$$\lim_{x\to\infty}\left(\sqrt[3]{ax^3+bx^2+cx+d}-\sqrt[3]{ax^3+px^2+qx+r}\right)=\frac{b-p}{3\sqrt[3]{a^2}}$$
Agar mengetahui bagaimana penerapan formula di atas untuk menyelesaikan permasalahan limit tak hingga akar pangkat 3, perhatikan beberapa contoh soal dengan pembahasan berikut ini:
Baca: Download bank soal limit tak hingga pdf
Contoh 1
$\displaystyle\lim_{x\to\infty}{\left(\sqrt[3]{x^3+12x^2+4x-1}-\sqrt[3]{x^3-6x^2+2x+10}\right)}=$ ....
Pembahasan:
$\begin{align*}\lim_{x\to\infty}{\left(\sqrt[3]{x^3+12x^2+4x-1}-\sqrt[3]{x^3-6x^2+2x+10}\right)}&=\frac{12-(-6)}{3\sqrt[3]{1^2}}\\&=\frac{12+6}{3}\\&=\frac{18}{3}\\&=6\end{align*}$
Contoh 2
$\displaystyle\lim_{x\to\infty}{\left(\sqrt[3]{8x^3+12x^2}-(2x+2)\right)}=$ ....
Pembahasan:
$\begin{align*}\lim_{x\to\infty}\left ( \sqrt[3]{8x^3+12x^2}-(2x+2)] \right )&=\lim_{x\to\infty}\left ( \sqrt[3]{8x^3+12x^2} -\sqrt[3]{(2x+2)^3}\right )\\&=\lim_{x\to\infty}\left ( \sqrt[3]{8x^3+12x^2} -\sqrt[3]{8x^3-24x^2+24x-8}\right )\\&=\frac{2-(-24)}{3.\sqrt[3]{8^2}}\\&=\frac{36}{12}\\&=3\end{align*}$
Demikianlah pembahasan terkait materi limit tak hingga akar pangkat 3. Semoga bermanfaat
Tidak ada komentar:
Posting Komentar